Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Murmur Detection Using Parallel Recurrent & Convolutional Neural Networks (1808.04411v1)

Published 13 Aug 2018 in cs.SD, cs.LG, eess.AS, and stat.ML

Abstract: In this article, we propose a novel technique for classification of the Murmurs in heart sound. We introduce a novel deep neural network architecture using parallel combination of the Recurrent Neural Network (RNN) based Bidirectional Long Short-Term Memory (BiLSTM) & Convolutional Neural Network (CNN) to learn visual and time-dependent characteristics of Murmur in PCG waveform. Set of acoustic features are presented to our proposed deep neural network to discriminate between Normal and Murmur class. The proposed method was evaluated on a large dataset using 5-fold cross-validation, resulting in a sensitivity and specificity of 96 +- 0.6 % , 100 +- 0 % respectively and F1 Score of 98 +- 0.3 %.

Citations (10)

Summary

We haven't generated a summary for this paper yet.