Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global Complexity Analysis of Inexact Successive Quadratic Approximation methods for Regularized Optimization under Mild Assumptions (1808.04291v1)

Published 13 Aug 2018 in math.OC

Abstract: Successive quadratic approximations (SQA) are numerically efficient for minimizing the sum of a smooth function and a convex function. The iteration complexity of inexact SQA methods has been analyzed recently. In this paper, we present an algorithmic framework of inexact SQA methods with four types of line searches, and analyze its global complexity under milder assumptions. First, we show its well-definedness and some decreasing properties. Second, under the quadratic growth condition and a uniform positive lower bound condition on stepsizes, we show that the function value sequence and the iterate sequence are linearly convergent. Moreover, we obtain a o(1/k) complexity without the quadratic growth condition, improving existing O(1/k) complexity results. At last, we show that a local gradient-Lipschitz-continuity condition could guarantee a uniform positive lower bound for the stepsizes.

Summary

We haven't generated a summary for this paper yet.