Papers
Topics
Authors
Recent
2000 character limit reached

On the Shannon entropy of the number of vertices with zero in-degree in randomly oriented hypergraphs

Published 13 Aug 2018 in math.PR, cs.IT, and math.IT | (1808.04166v1)

Abstract: Suppose that you have $n$ colours and $m$ mutually independent dice, each of which has $r$ sides. Each dice lands on any of its sides with equal probability. You may colour the sides of each die in any way you wish, but there is one restriction: you are not allowed to use the same colour more than once on the sides of a die. Any other colouring is allowed. Let $X$ be the number of different colours that you see after rolling the dice. How should you colour the sides of the dice in order to maximize the Shannon entropy of $X$? In this article we investigate this question. We show that the entropy of $X$ is at most $\frac{1}{2} \log(n) + O(1)$ and that the bound is tight, up to a constant additive factor, in the case of there being equally many coins and colours. Our proof employs the differential entropy bound on discrete entropy, along with a lower bound on the entropy of binomial random variables whose outcome is conditioned to be an even integer. We conjecture that the entropy is maximized when the colours are distributed over the sides of the dice as evenly as possible.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.