Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Grey-box Process Control Mining for Anomaly Monitoring and Deconstruction (1808.03709v1)

Published 10 Aug 2018 in cs.SY

Abstract: We present a new "grey-box" approach to anomaly detection in smart manufacturing. The approach is designed for tools run by control systems which execute recipe steps to produce semiconductor wafers. Multiple streaming sensors capture trace data to guide the control systems and for quality control. These control systems are typically PI controllers which can be modeled as an ordinary differential equation (ODE) coupled with a control equation, capturing the physics of the process. The ODE "white-box" models capture physical causal relationships that can be used in simulations to determine how the process will react to changes in control parameters, but they have limited utility for anomaly detection. Many "black-box" approaches exist for anomaly detection in manufacturing, but they typically do not exploit the underlying process control. The proposed "grey-box" approach uses the process-control ODE model to derive a parametric function of sensor data. Bayesian regression is used to fit the parameters of these functions to form characteristic "shape signatures". The probabilistic model provides a natural anomaly score for each wafer, which captures poor control and strange shape signatures. The anomaly score can be deconstructed into its constituent parts in order to identify which parameters are contributing to anomalies. We demonstrate how the anomaly score can be used to monitor complex multi-step manufacturing processes to detect anomalies and changes and show how the shape signatures can provide insight into the underlying sources of process variation that are not readily apparent in the sensor data.

Citations (1)

Summary

We haven't generated a summary for this paper yet.