Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detection of Hard Exudates in Retinal Fundus Images using Deep Learning (1808.03656v1)

Published 10 Aug 2018 in eess.IV

Abstract: Diabetic Retinopathy (DR) is a retinal disorder that affects the people having diabetes mellitus for a long time (20 years). DR is one of the main reasons for the preventable blindness all over the world. If not detected early the patient may progress to severe stages of irreversible blindness. Lack of Ophthalmologists poses a serious problem for the growing diabetes patients. It is advised to develop an automated DR screening system to assist the Ophthalmologist in decision making. Hard exudates develop when DR is present. It is important to detect hard exudates in order to detect DR in an early stage. Research has been done to detect hard exudates using regular image processing techniques and Machine Learning techniques. Here, a deep learning algorithm has been presented in this paper that detects hard exudates in fundus images of the retina.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Avula Benzamin (1 paper)
  2. Chandan Chakraborty (1 paper)
Citations (51)

Summary

We haven't generated a summary for this paper yet.