Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Randomness to Improve Robustness of Machine-Learning Models Against Evasion Attacks (1808.03601v1)

Published 10 Aug 2018 in cs.CR, cs.LG, and stat.ML

Abstract: Machine learning models have been widely used in security applications such as intrusion detection, spam filtering, and virus or malware detection. However, it is well-known that adversaries are always trying to adapt their attacks to evade detection. For example, an email spammer may guess what features spam detection models use and modify or remove those features to avoid detection. There has been some work on making machine learning models more robust to such attacks. However, one simple but promising approach called {\em randomization} is underexplored. This paper proposes a novel randomization-based approach to improve robustness of machine learning models against evasion attacks. The proposed approach incorporates randomization into both model training time and model application time (meaning when the model is used to detect attacks). We also apply this approach to random forest, an existing ML method which already has some degree of randomness. Experiments on intrusion detection and spam filtering data show that our approach further improves robustness of random-forest method. We also discuss how this approach can be applied to other ML models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Fan Yang (878 papers)
  2. Zhiyuan Chen (58 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.