Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Unified Analysis of AdaGrad with Weighted Aggregation and Momentum Acceleration (1808.03408v4)

Published 10 Aug 2018 in cs.LG, cs.NA, math.OC, and stat.ML

Abstract: Integrating adaptive learning rate and momentum techniques into SGD leads to a large class of efficiently accelerated adaptive stochastic algorithms, such as AdaGrad, RMSProp, Adam, AccAdaGrad, \textit{etc}. In spite of their effectiveness in practice, there is still a large gap in their theories of convergences, especially in the difficult non-convex stochastic setting. To fill this gap, we propose \emph{weighted AdaGrad with unified momentum}, dubbed AdaUSM, which has the main characteristics that (1) it incorporates a unified momentum scheme which covers both the heavy ball momentum and the Nesterov accelerated gradient momentum; (2) it adopts a novel weighted adaptive learning rate that can unify the learning rates of AdaGrad, AccAdaGrad, Adam, and RMSProp. Moreover, when we take polynomially growing weights in AdaUSM, we obtain its $\mathcal{O}(\log(T)/\sqrt{T})$ convergence rate in the non-convex stochastic setting. We also show that the adaptive learning rates of Adam and RMSProp correspond to taking exponentially growing weights in AdaUSM, thereby providing a new perspective for understanding Adam and RMSProp. Lastly, comparative experiments of AdaUSM against SGD with momentum, AdaGrad, AdaEMA, Adam, and AMSGrad on various deep learning models and datasets are also carried out.

Citations (12)

Summary

We haven't generated a summary for this paper yet.