Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feature Dimensionality Reduction for Video Affect Classification: A Comparative Study (1808.02956v1)

Published 8 Aug 2018 in cs.LG, cs.CV, cs.HC, and stat.ML

Abstract: Affective computing has become a very important research area in human-machine interaction. However, affects are subjective, subtle, and uncertain. So, it is very difficult to obtain a large number of labeled training samples, compared with the number of possible features we could extract. Thus, dimensionality reduction is critical in affective computing. This paper presents our preliminary study on dimensionality reduction for affect classification. Five popular dimensionality reduction approaches are introduced and compared. Experiments on the DEAP dataset showed that no approach can universally outperform others, and performing classification using the raw features directly may not always be a bad choice.

Citations (3)

Summary

We haven't generated a summary for this paper yet.