Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hard to Solve Instances of the Euclidean Traveling Salesman Problem (1808.02859v3)

Published 8 Aug 2018 in cs.DM, cs.CC, cs.DS, and math.CO

Abstract: The well known $4/3$ conjecture states that the integrality ratio of the subtour LP is at most $4/3$ for metric Traveling Salesman instances. We present a family of Euclidean Traveling Salesman instances for which we prove that the integrality ratio of the subtour LP converges to $4/3$. These instances (using the rounded Euclidean norm) turn out to be hard to solve exactly with Concorde, the fastest existing exact TSP solver. For a 200 vertex instance from our family of Euclidean Traveling Salesman instances Concorde needs several days of CPU time. This is more than 1,000,000 times the runtime for a TSPLIB instance of similar size. Thus our new family of Euclidean Traveling Salesman instances may serve as new benchmark instances for TSP algorithms.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Stefan Hougardy (14 papers)
  2. Xianghui Zhong (8 papers)
Citations (21)

Summary

We haven't generated a summary for this paper yet.