Papers
Topics
Authors
Recent
2000 character limit reached

Random conductance models with stable-like jumps: heat kernel estimates and Harnack inequalities

Published 7 Aug 2018 in math.PR | (1808.02178v1)

Abstract: We establish two-sided heat kernel estimates for random conductance models with non-uniformly elliptic (possibly degenerate) stable-like jumps on graphs. These are long range counterparts of well known two-sided Gaussian heat kernel estimates by M.T. Barlow for nearest neighbor (short range) random walks on the supercritical percolation cluster. Unlike the cases for nearest neighbor conductance models, the idea through parabolic Harnack inequalities does not work, since even elliptic Harnack inequalities do not hold in the present setting. As an application, we establish the local limit theorem for the models.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.