Papers
Topics
Authors
Recent
Search
2000 character limit reached

Schema Integration on Massive Data Sources

Published 5 Aug 2018 in cs.DB | (1808.01620v1)

Abstract: As the fundamental phrase of collecting and analyzing data, data integration is used in many applications, such as data cleaning, bioinformatics and pattern recognition. In big data era, one of the major problems of data integration is to obtain the global schema of data sources since the global schema could be hardly derived from massive data sources directly. In this paper, we attempt to solve such schema integration problem. For different scenarios, we develop batch and incremental schema integration algorithms. We consider the representation difference of attribute names in various data sources and propose ED Join and Semantic Join algorithms to integrate attributes with different representations. Extensive experimental results demonstrate that the proposed algorithms could integrate schemas efficiently and effectively.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.