Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Nonnegative Integer Matrices and Short Killing Words (1808.00940v4)

Published 2 Aug 2018 in cs.FL and math.CO

Abstract: Let $n$ be a natural number and $\mathcal{M}$ a set of $n \times n$-matrices over the nonnegative integers such that the joint spectral radius of $\mathcal{M}$ is at most one. We show that if the zero matrix $0$ is a product of matrices in $\mathcal{M}$, then there are $M_1, \ldots, M_{n5} \in \mathcal{M}$ with $M_1 \cdots M_{n5} = 0$. This result has applications in automata theory and the theory of codes. Specifically, if $X \subset \Sigma*$ is a finite incomplete code, then there exists a word $w \in \Sigma*$ of length polynomial in $\sum_{x \in X} |x|$ such that $w$ is not a factor of any word in $X*$. This proves a weak version of Restivo's conjecture.

Citations (2)

Summary

We haven't generated a summary for this paper yet.