Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Menger-like property of tree-cut width (1808.00863v3)

Published 2 Aug 2018 in math.CO and cs.DM

Abstract: In 1990, Thomas proved that every graph admits a tree decomposition of minimum width that additionally satisfies a certain vertex-connectivity condition called leanness [A Menger-like property of tree-width: The finite case. Journal of Combinatorial Theory, Series B, 48(1):67-76, 1990]. This result had many uses and has been extended to several other decompositions. In this paper, we consider tree-cut decompositions, that have been introduced by Wollan as a possible edge-version of tree decompositions [The structure of graphs not admitting a fixed immersion. Journal of Combinatorial Theory, Series B, 110:47-66, 2015]. We show that every graph admits a tree-cut decomposition of minimum width that additionally satisfies an edge-connectivity condition analogous to Thomas' leanness.

Citations (8)

Summary

We haven't generated a summary for this paper yet.