Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tverberg-Type Theorems with Trees and Cycles as (Nerve) Intersection Patterns (1808.00551v1)

Published 1 Aug 2018 in math.MG, cs.CG, and math.CO

Abstract: Tverberg's theorem says that a set with sufficiently many points in $\mathbb{R}d$ can always be partitioned into $m$ parts so that the $(m-1)$-simplex is the (nerve) intersection pattern of the convex hulls of the parts. The main results of our paper demonstrate that Tverberg's theorem is but a special case of a more general situation. Given sufficiently many points, all trees and cycles can also be induced by at least one partition of a point set.

Citations (2)

Summary

We haven't generated a summary for this paper yet.