Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

End-to-End Physics Event Classification with CMS Open Data: Applying Image-Based Deep Learning to Detector Data for the Direct Classification of Collision Events at the LHC (1807.11916v3)

Published 31 Jul 2018 in physics.data-an, cs.CV, cs.LG, and hep-ex

Abstract: This paper describes the construction of novel end-to-end image-based classifiers that directly leverage low-level simulated detector data to discriminate signal and background processes in pp collision events at the Large Hadron Collider at CERN. To better understand what end-to-end classifiers are capable of learning from the data and to address a number of associated challenges, we distinguish the decay of the standard model Higgs boson into two photons from its leading background sources using high-fidelity simulated CMS Open Data. We demonstrate the ability of end-to-end classifiers to learn from the angular distribution of the photons recorded as electromagnetic showers, their intrinsic shapes, and the energy of their constituent hits, even when the underlying particles are not fully resolved, delivering a clear advantage in such cases over purely kinematics-based classifiers.

Citations (17)

Summary

We haven't generated a summary for this paper yet.