Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Making Classifier Chains Resilient to Class Imbalance (1807.11393v4)

Published 30 Jul 2018 in cs.LG and stat.ML

Abstract: Class imbalance is an intrinsic characteristic of multi-label data. Most of the labels in multi-label data sets are associated with a small number of training examples, much smaller compared to the size of the data set. Class imbalance poses a key challenge that plagues most multi-label learning methods. Ensemble of Classifier Chains (ECC), one of the most prominent multi-label learning methods, is no exception to this rule, as each of the binary models it builds is trained from all positive and negative examples of a label. To make ECC resilient to class imbalance, we first couple it with random undersampling. We then present two extensions of this basic approach, where we build a varying number of binary models per label and construct chains of different sizes, in order to improve the exploitation of majority examples with approximately the same computational budget. Experimental results on 16 multi-label datasets demonstrate the effectiveness of the proposed approaches in a variety of evaluation metrics.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Bin Liu (441 papers)
  2. Grigorios Tsoumakas (50 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.