Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A study on spline quasi-interpolation based quadrature rules for the isogeometric Galerkin BEM (1807.11277v1)

Published 30 Jul 2018 in math.NA

Abstract: Two recently introduced quadrature schemes for weakly singular integrals [Calabr`o et al. J. Comput. Appl. Math. 2018] are investigated in the context of boundary integral equations arising in the isogeometric formulation of Galerkin Boundary Element Method (BEM). In the first scheme, the regular part of the integrand is approximated by a suitable quasi--interpolation spline. In the second scheme the regular part is approximated by a product of two spline functions. The two schemes are tested and compared against other standard and novel methods available in literature to evaluate different types of integrals arising in the Galerkin formulation. Numerical tests reveal that under reasonable assumptions the second scheme convergences with the optimal order in the Galerkin method, when performing $h$-refinement, even with a small amount of quadrature nodes. The quadrature schemes are validated also in numerical examples to solve 2D Laplace problems with Dirichlet boundary conditions.

Summary

We haven't generated a summary for this paper yet.