Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Electron Micrograph Signal-to-Noise with an Atrous Convolutional Encoder-Decoder (1807.11234v2)

Published 30 Jul 2018 in cs.CV

Abstract: We present an atrous convolutional encoder-decoder trained to denoise 512$\times$512 crops from electron micrographs. It consists of a modified Xception backbone, atrous convoltional spatial pyramid pooling module and a multi-stage decoder. Our neural network was trained end-to-end to remove Poisson noise applied to low-dose ($\ll$ 300 counts ppx) micrographs created from a new dataset of 17267 2048$\times$2048 high-dose ($>$ 2500 counts ppx) micrographs and then fine-tuned for ordinary doses (200-2500 counts ppx). Its performance is benchmarked against bilateral, non-local means, total variation, wavelet, Wiener and other restoration methods with their default parameters. Our network outperforms their best mean squared error and structural similarity index performances by 24.6% and 9.6% for low doses and by 43.7% and 5.5% for ordinary doses. In both cases, our network's mean squared error has the lowest variance. Source code and links to our new high-quality dataset and trained network have been made publicly available at https://github.com/Jeffrey-Ede/Electron-Micrograph-Denoiser

Citations (1)

Summary

We haven't generated a summary for this paper yet.