Papers
Topics
Authors
Recent
Search
2000 character limit reached

Transcendental sums related to the zeros of zeta functions

Published 30 Jul 2018 in math.NT | (1807.11201v1)

Abstract: While the distribution of the non-trivial zeros of the Riemann zeta function constitutes a central theme in Mathematics, nothing is known about the algebraic nature of these non-trivial zeros. In this article, we study the transcendental nature of sums of the form $$ \sum_{\rho } R(\rho) x{\rho}, $$ where the sum is over the non-trivial zeros $\rho$ of $\zeta(s)$, $R(x) \in \overline{\Q}(x) $ is a rational function over algebraic numbers and $x >0$ is a real algebraic number. In particular, we show that the function $$ f(x) = \sum_{\rho } \frac{x{\rho}}{\rho} $$ has infinitely many zeros in $(1, \infty)$, at most one of which is algebraic. The transcendence tools required for studying $f(x)$ in the range $x<1$ seem to be different from those in the range $x>1$. For $x < 1$, we have the following non-vanishing theorem: If for an integer $d \ge 1$, $f(\pi \sqrt{d} x)$ has a rational zero in $(0,~1/\pi \sqrt{d})$, then $$ L'(1,\chi_{-d}) \neq 0, $$ where $\chi_{-d}$ is the quadratic character associated to the imaginary quadratic field $K:= \Q(\sqrt{-d})$. Finally, we consider analogous questions for elements in the Selberg class. Our proofs rest on results from analytic as well as transcendental number theory.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.