Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symmetry of Birkhoff-James orthogonality of operators defined between infinite dimensional Banach spaces (1807.11166v1)

Published 30 Jul 2018 in math.FA

Abstract: We study left symmetric bounded linear operators in the sense of Birkhoff-James orthogonality defined between infinite dimensional Banach spaces. We prove that a bounded linear operator defined between two strictly convex Banach spaces is left symmetric if and only if it is zero operator when the domain space is reflexive and Kadets-Klee. We exhibit a non-zero left symmetric operator when the spaces are not strictly convex. We also study right symmetric bounded linear operators between infinite dimensional Banach spaces.

Summary

We haven't generated a summary for this paper yet.