Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Corwin-Greenleaf multiplicity function for compact extensions of $\mathbb{R}^n$ (1807.10864v1)

Published 28 Jul 2018 in math.RT

Abstract: Let $G=K\ltimes\mathbb{R}n$, where $K$ is a compact connected subgroup of $O(n)$ acting on $\mathbb{R}n$ by rotations. Let $\mathfrak{g}\supset\mathfrak{k}$ be the respective Lie algebras of $G$ and $K$, and $pr: \mathfrak{g}{}\longrightarrow\mathfrak{k}{}$ the natural projection. For admissible coadjoint orbits $\mathcal{O}{G}\subset\mathfrak{g}{*}$ and $\mathcal{O}{K}\subset\mathfrak{k}{*}$, we denote by $n(\mathcal{O}{G},\mathcal{O}{K})$ the number of $K$-orbits in $\mathcal{O}{G}\cap pr{-1}(\mathcal{O}{K})$, which is called the Corwin-Greenleaf multiplicity function. Let $\pi\in\widehat{G}$ and $\tau\in\widehat{K}$ be the unitary representations corresponding, respectively, to $\mathcal{O}G$ and $\mathcal{O}K$ by the orbit method. In this paper, we investigate the relationship between $n(\mathcal{O}G,\mathcal{O}K)$ and the multiplicity $m(\pi,\tau)$ of $\tau$ in the restriction of $\pi$ to $K$. If $\pi$ is infinite-dimensional and the associated little group is connected, we show that $n(\mathcal{O}G,\mathcal{O}K)\neq 0$ if and only if $m(\pi,\tau)\neq 0$. Furthermore, for $K=SO(n)$, $n\geq 3$, we give a sufficient condition on the representations $\pi$ and $\tau$ in order that $n(\mathcal{O}G,\mathcal{O}K)=m(\pi,\tau)$.

Summary

We haven't generated a summary for this paper yet.