Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clustering Prominent People and Organizations in Topic-Specific Text Corpora (1807.10800v2)

Published 27 Jul 2018 in cs.CL

Abstract: Named entities in text documents are the names of people, organization, location or other types of objects in the documents that exist in the real world. A persisting research challenge is to use computational techniques to identify such entities in text documents. Once identified, several text mining tools and algorithms can be utilized to leverage these discovered named entities and improve NLP applications. In this paper, a method that clusters prominent names of people and organizations based on their semantic similarity in a text corpus is proposed. The method relies on common named entity recognition techniques and on recent word embeddings models. The semantic similarity scores generated using the word embeddings models for the named entities are used to cluster similar entities of the people and organizations types. Two human judges evaluated ten variations of the method after it was run on a corpus that consists of 4,821 articles on a specific topic. The performance of the method was measured using three quantitative measures. The results of these three metrics demonstrate that the method is effective in clustering semantically similar named entities.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Abdulkareem Alsudais (7 papers)
  2. Hovig Tchalian (1 paper)
Citations (1)

Summary

We haven't generated a summary for this paper yet.