Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Faster Recovery of Approximate Periods over Edit Distance (1807.10483v1)

Published 27 Jul 2018 in cs.DS

Abstract: The approximate period recovery problem asks to compute all $\textit{approximate word-periods}$ of a given word $S$ of length $n$: all primitive words $P$ ($|P|=p$) which have a periodic extension at edit distance smaller than $\tau_p$ from $S$, where $\tau_p = \lfloor \frac{n}{(3.75+\epsilon)\cdot p} \rfloor$ for some $\epsilon>0$. Here, the set of periodic extensions of $P$ consists of all finite prefixes of $P\infty$. We improve the time complexity of the fastest known algorithm for this problem of Amir et al. [Theor. Comput. Sci., 2018] from $O(n{4/3})$ to $O(n \log n)$. Our tool is a fast algorithm for Approximate Pattern Matching in Periodic Text. We consider only verification for the period recovery problem when the candidate approximate word-period $P$ is explicitly given up to cyclic rotation; the algorithm of Amir et al. reduces the general problem in $O(n)$ time to a logarithmic number of such more specific instances.

Citations (2)

Summary

We haven't generated a summary for this paper yet.