Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Singular limits for models of selection and mutations with heavy-tailed mutation distribution (1807.10475v3)

Published 27 Jul 2018 in math.AP

Abstract: In this article, we perform an asymptotic analysis of a nonlocal reaction-diffusion equation, with a fractional laplacian as the diffusion term and with a nonlocal reaction term. Such equation models the evolutionary dynamics of a phenotypically structured population. We perform a rescaling considering large time and small effect of mutations, but still with algebraic law. We prove that asymptotically the phenotypic distribution density concentrates as a Dirac mass which evolves in time. This work extends an approach based on Hamilton-Jacobi equations with constraint, that has been developed to study models from evolutionary biology, to the case of fat-tailed mutation kernels. However, unlike previous works within this approach, the WKB transformation of the solution does not converge to a viscosity solution of a Hamilton-Jacobi equation but to a viscosity supersolution of such equation which is minimal in a certain class of supersolutions.

Summary

We haven't generated a summary for this paper yet.