Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging Support Vector Machine for Opcode Density Based Detection of Crypto-Ransomware (1807.10442v1)

Published 27 Jul 2018 in cs.CR

Abstract: Ransomware is a significant global threat, with easy deployment due to the prevalent ransomware-as-a-service model. Machine learning algorithms incorporating the use of opcode characteristics and Support Vector Machine have been demonstrated to be a successful method for general malware detection. This research focuses on crypto-ransomware and uses static analysis of malicious and benign Portable Executable files to extract 443 opcodes across all samples, representing them as density histograms within the dataset. Using the SMO classifier and PUK kernel in the WEKA machine learning toolset it demonstrates that this methodology can achieve 100% precision when differentiating between ransomware and goodware, and 96.5% when differentiating between 5 cryptoransomware families and goodware. Moreover, 8 different attribute selection methods are evaluated to achieve significant feature reduction. Using the CorrelationAttributeEval method close to 100% precision can be maintained with a feature reduction of 59.5%. The CFSSubset filter achieves the highest feature reduction of 97.7% however with a slightly lower precision at 94.2%.

Citations (46)

Summary

We haven't generated a summary for this paper yet.