Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the sum of a prime power and a power in short intervals (1807.10150v2)

Published 26 Jul 2018 in math.NT

Abstract: Let $R_{k,\ell}(N)$ be the representation function for the sum of the $k$-th power of a prime and the $\ell$-th power of a positive integer. Languasco and Zaccagnini (2017) proved an asymptotic formula for the average of $R_{1,2}(N)$ over short intervals $(X,X+H]$ of the length $H$ slightly shorter than $X{\frac{1}{2}}$, which is shorter than the length $H=X{\frac{1}{2}+\epsilon}$ in the exceptional set estimates of Mikawa (1993) and of Perelli and Pintz (1995). In this paper, we prove that the same asymptotic formula for $R_{1,2}(N)$ holds for $H$ of the size $X{0.337}$. Recently, Languasco and Zaccagnini (2018) extended their result to more general $(k,\ell)$. We also consider this general case, and as a corollary, we prove a conditional result of Languasco and Zaccagnini (2018) for the case $\ell=2$ unconditionally up to some small factors.

Summary

We haven't generated a summary for this paper yet.