Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bifurcation Analysis in A Diffusive Mussel-Algae Model with Delay (1807.09525v2)

Published 25 Jul 2018 in math.DS

Abstract: In this paper, we consider the dynamics of a delayed reaction-diffusion mussel-algae system subject to Neumann boundary conditions. When the delay is zero, we show the existence of positive solutions and the global stability of the boundary equilibrium. When the delay is not zero, we obtain the stability of the positive constant steady state and the existence of Hopf bifurcation by analyzing the distribution of characteristic values. By using the theory of normal form and center manifold reduction for partial functional differential equations, we derive an algorithm that determines the direction of Hopf bifurcation and the stability of bifurcating periodic solutions. Finally, some numerical simulations are carried out to support our theoretical results.

Summary

We haven't generated a summary for this paper yet.