Papers
Topics
Authors
Recent
2000 character limit reached

A Convex Formulation for Binary Tomography

Published 24 Jul 2018 in eess.IV, cs.CE, eess.SP, and math.OC | (1807.09196v3)

Abstract: Binary tomography is concerned with the recovery of binary images from a few of their projections (i.e., sums of the pixel values along various directions). To reconstruct an image from noisy projection data, one can pose it as a constrained least-squares problem. As the constraints are non-convex, many approaches for solving it rely on either relaxing the constraints or heuristics. In this paper we propose a novel convex formulation, based on the Lagrange dual of the constrained least-squares problem. The resulting problem is a generalized LASSO problem which can be solved efficiently. It is a relaxation in the sense that it can only be guaranteed to give a feasible solution; not necessarily the optimal one. In exhaustive experiments on small images (2x2, 3x3, 4x4) we find, however, that if the problem has a unique solution, our dual approach finds it. In case of multiple solutions, our approach finds the commonalities between the solutions. Further experiments on realistic numerical phantoms and an experiment on X-ray dataset show that our method compares favourably to Total Variation and DART.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.