Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Round Compression for Parallel Graph Algorithms in Strongly Sublinear Space (1807.08745v1)

Published 23 Jul 2018 in cs.DS and cs.DC

Abstract: The Massive Parallel Computation (MPC) model is a theoretical framework for popular parallel and distributed platforms such as MapReduce, Hadoop, or Spark. We consider the task of computing a large matching or small vertex cover in this model when the space per machine is $n\delta$ for $\delta \in (0,1)$, where $n$ is the number of vertices in the input graph. A direct simulation of classic PRAM and distributed algorithms from the 1980s results in algorithms that require at least a logarithmic number of MPC rounds. We give the first algorithm that breaks this logarithmic barrier and runs in $\tilde O(\sqrt{\log n})$ rounds, as long as the total space is at least slightly superlinear in the number of vertices. The result is obtained by repeatedly compressing several rounds of a natural peeling algorithm to a logarithmically smaller number of MPC rounds. Each time we show that it suffices to consider a low-degree subgraph, in which local neighborhoods can be explored with exponential speedup. Our techniques are relatively simple and can also be used to accelerate the simulation of distributed algorithms for bounded-degree graphs and finding a maximal independent set in bounded-arboricity graphs.

Citations (29)

Summary

We haven't generated a summary for this paper yet.