Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A refined mean field approximation of synchronous discrete-time population models (1807.08585v1)

Published 20 Jul 2018 in cs.PF, cs.SY, and math.DS

Abstract: Mean field approximation is a popular method to study the behaviour of stochastic models composed of a large number of interacting objects. When the objects are asynchronous, the mean field approximation of a population model can be expressed as an ordinary differential equation. When the objects are (clock-) synchronous the mean field approximation is a discrete time dynamical system. We focus on the latter.We study the accuracy of mean field approximation when this approximation is a discrete-time dynamical system. We extend a result that was shown for the continuous time case and we prove that expected performance indicators estimated by mean field approximation are $O(1/N)$-accurate. We provide simple expressions to effectively compute the asymptotic error of mean field approximation, for finite time-horizon and steady-state, and we use this computed error to propose what we call a \emph{refined} mean field approximation. We show, by using a few numerical examples, that this technique improves the quality of approximation compared to the classical mean field approximation, especially for relatively small population sizes.

Citations (17)

Summary

We haven't generated a summary for this paper yet.