Papers
Topics
Authors
Recent
Search
2000 character limit reached

Equivariant K-theory and Resolution I: Abelian actions

Published 22 Jul 2018 in math.AT, math.DG, math.GR, math.KT, and math.RT | (1807.08299v1)

Abstract: The smooth action of a compact Lie group on a compact manifold can be resolved to an iterated space, as made explicit by Pierre Albin and the second author. On the resolution the lifted action has fixed isotropy type, in an iterated sense, with connecting fibrations and this structure descends to a resolution of the quotient. For an abelian group action the equivariant K-theory can then be described in terms of bundles over the base with morphisms covering the connecting maps. A similar model is given, in terms of appropriately twisted deRham forms over the base as an iterated space, for delocalized equivariant cohomology in the sense of Baum, Brylinski and MacPherson. This approach allows a direct proof of their equivariant version of the Atiyah-Hirzebruch isomorphism.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.