Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Numerical Estimation of Joint Probability Distribution from Lebesgue Integral Quadratures (1807.08197v4)

Published 21 Jul 2018 in math.NA, cs.NA, and stat.ML

Abstract: An important application of Lebesgue integral quadrature arXiv:1807.06007 is developed. Given two random processes, $f(x)$ and $g(x)$, two generalized eigenvalue problems can be formulated and solved. In addition to obtaining two Lebesgue quadratures (for $f$ and $g$) from two eigenproblems, the projections of $f$- and $g$- eigenvectors on each other allow to build a joint distribution estimator, the most general form of which is a density-matrix correlation. Examples of the density-matrix correlation can be a value-correlation $V_{f{[i]};g{[j]}}$, similar to a regular correlation concept, and a new one, a probability-correlation $P_{f{[i]};g{[j]}}$. If Christoffel function average is used instead of regular average the approach can be extended to an estimation of joint probability of three and more random processes. The theory is implemented numerically; the software is available under the GPLv3 license.

Citations (3)

Summary

We haven't generated a summary for this paper yet.