Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A family of diameter-based eigenvalue bounds for quantum graphs (1807.08185v2)

Published 21 Jul 2018 in math.SP

Abstract: We establish a sharp lower bound on the first non-trivial eigenvalue of the Laplacian on a metric graph equipped with natural (i.e., continuity and Kirchhoff) vertex conditions in terms of the diameter and the total length of the graph. This extends a result of, and resolves an open problem from, [J. B. Kennedy, P. Kurasov, G. Malenov\'a and D. Mugnolo, Ann. Henri Poincar\'e 17 (2016), 2439--2473, Section 7.2], and also complements an analogous lower bound for the corresponding eigenvalue of the combinatorial Laplacian on a discrete graph. We also give a family of corresponding lower bounds for the higher eigenvalues under the assumption that the total length of the graph is sufficiently large compared with its diameter. These inequalities are sharp in the case of trees.

Summary

We haven't generated a summary for this paper yet.