Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Stochastic Line Search Method with Convergence Rate Analysis (1807.07994v1)

Published 20 Jul 2018 in math.OC

Abstract: For deterministic optimization, line-search methods augment algorithms by providing stability and improved efficiency. We adapt a classical backtracking Armijo line-search to the stochastic optimization setting. While traditional line-search relies on exact computations of the gradient and values of the objective function, our method assumes that these values are available up to some dynamically adjusted accuracy which holds with some sufficiently large, but fixed, probability. We show the expected number of iterations to reach a near stationary point matches the worst-case efficiency of typical first-order methods, while for convex and strongly convex objective, it achieves rates of deterministic gradient descent in function values.

Summary

We haven't generated a summary for this paper yet.