Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-Generative Modelling: Covariate-Shift Adaptation with Cause and Effect Features (1807.07879v2)

Published 20 Jul 2018 in stat.ML and cs.LG

Abstract: Current methods for covariate-shift adaptation use unlabelled data to compute importance weights or domain-invariant features, while the final model is trained on labelled data only. Here, we consider a particular case of covariate shift which allows us also to learn from unlabelled data, that is, combining adaptation with semi-supervised learning. Using ideas from causality, we argue that this requires learning with both causes, $X_C$, and effects, $X_E$, of a target variable, $Y$, and show how this setting leads to what we call a semi-generative model, $P(Y,X_E|X_C,\theta)$. Our approach is robust to domain shifts in the distribution of causal features and leverages unlabelled data by learning a direct map from causes to effects. Experiments on synthetic data demonstrate significant improvements in classification over purely-supervised and importance-weighting baselines.

Citations (12)

Summary

We haven't generated a summary for this paper yet.