Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Concentration phenomena for a fractional Choquard equation with magnetic field (1807.07442v1)

Published 18 Jul 2018 in math.AP

Abstract: We consider the following nonlinear fractional Choquard equation $$ \varepsilon{2s}(-\Delta){s}_{A/\varepsilon} u + V(x)u = \varepsilon{\mu-N}\left(\frac{1}{|x|{\mu}}*F(|u|{2})\right)f(|u|{2})u \mbox{ in } \mathbb{R}{N}, $$ where $\varepsilon>0$ is a parameter, $s\in (0, 1)$, $0<\mu<2s$, $N\geq 3$, $(-\Delta){s}_{A}$ is the fractional magnetic Laplacian, $A:\mathbb{R}{N}\rightarrow \mathbb{R}{N}$ is a smooth magnetic potential, $V:\mathbb{R}{N}\rightarrow \mathbb{R}$ is a positive potential with a local minimum and $f$ is a continuous nonlinearity with subcritical growth. By using variational methods we prove the existence and concentration of nontrivial solutions for $\varepsilon>0$ small enough.

Summary

We haven't generated a summary for this paper yet.