Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Capsule based Approach for Polyphonic Sound Event Detection (1807.07436v2)

Published 19 Jul 2018 in eess.AS and cs.SD

Abstract: Polyphonic sound event detection (polyphonic SED) is an interesting but challenging task due to the concurrence of multiple sound events. Recently, SED methods based on convolutional neural networks (CNN) and recurrent neural networks (RNN) have shown promising performance. Generally, CNN are designed for local feature extraction while RNN are used to model the temporal dependency among these local features. Despite their success, it is still insufficient for existing deep learning techniques to separate individual sound event from their mixture, largely due to the overlapping characteristic of features. Motivated by the success of Capsule Networks (CapsNet), we propose a more suitable capsule based approach for polyphonic SED. Specifically, several capsule layers are designed to effectively select representative frequency bands for each individual sound event. The temporal dependency of capsule's outputs is then modeled by a RNN. And a dynamic threshold method is proposed for making the final decision based on RNN outputs. Experiments on the TUT-SED Synthetic 2016 dataset show that the proposed approach obtains an F1-score of 68.8% and an error rate of 0.45, outperforming the previous state-of-the-art method of 66.4% and 0.48, respectively.

Citations (18)

Summary

We haven't generated a summary for this paper yet.