The Capelli eigenvalue problem for Lie superalgebras (1807.07340v4)
Abstract: For a finite dimensional unital complex simple Jordan superalgebra $J$, the Tits-Kantor-Koecher construction yields a 3-graded Lie superalgebra $\mathfrak g_\flat\cong \mathfrak g_\flat(-1)\oplus\mathfrak g_\flat(0)\oplus\mathfrak g_\flat(1)$, such that $\mathfrak g_\flat(-1)\cong J$. Set $V:=\mathfrak g_\flat(-1)*$ and $\mathfrak g:=\mathfrak g_\flat(0)$. In most cases, the space $\mathcal P(V)$ of superpolynomials on $V$ is a completely reducible and multiplicity-free representation of $\mathfrak g$, with a decomposition $\mathcal P(V):=\bigoplus_{\lambda\in\Omega}V_\lambda$, where $\left(V_\lambda\right){\lambda\in\Omega}$ is a family of irreducible $\mathfrak g$-modules parametrized by a set of partitions $\Omega$. In these cases, one can define a natural basis $\left(D\lambda\right){\lambda\in\Omega}$ of "Capelli operators" for the algebra $\mathcal{PD}(V){\mathfrak g}$. In this paper we complete the solution to the Capelli eigenvalue problem, which is to determine the scalar $c\mu(\lambda)$ by which $D_\mu$ acts on $V_\lambda$. We associate a restricted root system $\mathit{\Sigma}$ to the symmetric pair $(\mathfrak g,\mathfrak k)$ that corresponds to $J$, which is either a deformed root system of type $\mathsf{A}(m,n)$ or a root system of type $\mathsf{Q}(n)$. We prove a necessary and sufficient condition on the structure of $\mathit{\Sigma}$ for $\mathcal{P}(V)$ to be completely reducible and multiplicity-free. When $\mathit{\Sigma}$ satisfies the latter condition we obtain an explicit formula for the eigenvalue $c_\mu(\lambda)$, in terms of Sergeev-Veselov's shifted super Jack polynomials when $\mathit{\Sigma}$ is of type $\mathsf{A}(m,n)$, and Okounkov-Ivanov's factorial Schur $Q$-polynomials when $\mathit{\Sigma}$ is of type $\mathsf{Q}(n)$.