Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Menon-Sury's identity with several Dirichlet characters (1807.07241v2)

Published 19 Jul 2018 in math.NT

Abstract: The Menon-Sury's identity is as follows: \begin{equation*} \sum_{\substack{1 \leq a, b_1, b_2, \ldots, b_r \leq n\\mathrm{gcd}(a,n)=1}} \mathrm{gcd}(a-1,b_1, b_2, \ldots, b_r,n)=\varphi(n) \sigma_r(n), \end{equation*} where $\varphi$ is Euler's totient function and $\sigma_r(n)=\sum_{d\mid n}{dr}$. Recently, Li, Hu and Kim \cite{L-K} extended the above identity to a multi-variable case with a Dirichlet character, that is, they proved \begin{equation*} \sum_{\substack{a\in\Bbb Z_n\ast \ b_1, \ldots, b_r\in\Bbb Z_n}} \mathrm{gcd}(a-1,b_1, b_2, \ldots, b_r,n)\chi(a)=\varphi(n)\sigma_r{\left(\frac{n}{d}\right)}, \end{equation*} where $\chi$ is a Dirichlet character modulo $n$ and $d$ is the conductor of $\chi$. In this paper, we explicitly compute the sum \begin{equation*}\sum_{\substack{a_1, \ldots, a_s\in\Bbb Z_n\ast \ b_1, ..., b_r\in\Bbb Z_n}}\gcd(a_1-1, \ldots, a_s-1,b_1, \ldots, b_r, n)\chi_{1}(a_1) \cdots \chi_{s}(a_s).\end{equation*} where $\chi_{i} (1\leq i\leq s)$ are Dirichlet characters mod $n$ with conductor $d_i$. A special but common case of our main result reads like this : \begin{equation*}\sum_{\substack{a_1, \ldots, a_s\in\Bbb Z_n\ast \ b_1, ..., b_r\in\Bbb Z_n}}\gcd(a_1-1, \ldots, a_s-1,b_1, \ldots, b_r, n)\chi_{1}(a_1) \cdots \chi_{s}(a_s)=\varphi(n)\sigma_{s+r-1}\left(\frac{n}{d}\right)\end{equation*} if $d$ and $n$ have exactly the same prime factors, where $d={\rm lcm}(d_1,\ldots,d_s)$ is the least common multiple of $d_1,\ldots,d_s$. Our result generalizes the above Menon-Sury's identity and Li-Hu-Kim's identity.

Summary

We haven't generated a summary for this paper yet.