Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-Efficient Weakly Supervised Learning for Low-Resource Audio Event Detection Using Deep Learning (1807.06972v2)

Published 17 Jul 2018 in cs.SD, cs.LG, eess.AS, and stat.ML

Abstract: We propose a method to perform audio event detection under the common constraint that only limited training data are available. In training a deep learning system to perform audio event detection, two practical problems arise. Firstly, most datasets are "weakly labelled" having only a list of events present in each recording without any temporal information for training. Secondly, deep neural networks need a very large amount of labelled training data to achieve good quality performance, yet in practice it is difficult to collect enough samples for most classes of interest. In this paper, we propose a data-efficient training of a stacked convolutional and recurrent neural network. This neural network is trained in a multi instance learning setting for which we introduce a new loss function that leads to improved training compared to the usual approaches for weakly supervised learning. We successfully test our approach on two low-resource datasets that lack temporal labels.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Veronica Morfi (8 papers)
  2. Dan Stowell (51 papers)
Citations (15)

Summary

We haven't generated a summary for this paper yet.