Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Greedy Approximate Projection for Magnetic Resonance Fingerprinting with Partial Volumes (1807.06912v2)

Published 18 Jul 2018 in eess.IV

Abstract: In quantitative Magnetic Resonance Imaging, traditional methods suffer from the so-called Partial Volume Effect (PVE) due to spatial resolution limitations. As a consequence of PVE, the parameters of the voxels containing more than one tissue are not correctly estimated. Magnetic Resonance Fingerprinting (MRF) is not an exception. The existing methods addressing PVE are neither scalable nor accurate. We propose to formulate the recovery of multiple tissues per voxel as a nonconvex constrained least-squares minimisation problem. To solve this problem, we develop a memory efficient, greedy approximate projected gradient descent algorithm, dubbed GAP-MRF. Our method adaptively finds the regions of interest on the manifold of fingerprints defined by the MRF sequence. We generalise our method to compensate for phase errors appearing in the model, using an alternating minimisation approach. We show, through simulations on synthetic data with PVE, that our algorithm outperforms state-of-the-art methods. Our approach is validated on the EUROSPIN phantom and on in vivo datasets.

Citations (10)

Summary

We haven't generated a summary for this paper yet.