Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Mixed-Stationary Gaussian Process for Flexible Non-Stationary Modeling of Spatial Outcomes (1807.06656v1)

Published 17 Jul 2018 in stat.ML and cs.LG

Abstract: Gaussian processes (GPs) are commonplace in spatial statistics. Although many non-stationary models have been developed, there is arguably a lack of flexibility compared to equipping each location with its own parameters. However, the latter suffers from intractable computation and can lead to overfitting. Taking the instantaneous stationarity idea, we construct a non-stationary GP with the stationarity parameter individually set at each location. Then we utilize the non-parametric mixture model to reduce the effective number of unique parameters. Different from a simple mixture of independent GPs, the mixture in stationarity allows the components to be spatial correlated, leading to improved prediction efficiency. Theoretical properties are examined and a linearly scalable algorithm is provided. The application is shown through several simulated scenarios as well as the massive spatiotemporally correlated temperature data.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.