Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SRN: Side-output Residual Network for Object Reflection Symmetry Detection and Beyond (1807.06621v2)

Published 17 Jul 2018 in cs.CV

Abstract: In this paper, we establish a baseline for object reflection symmetry detection in complex backgrounds by presenting a new benchmark and an end-to-end deep learning approach, opening up a promising direction for symmetry detection in the wild. The new benchmark, Sym-PASCAL, spans challenges including object diversity, multi-objects, part-invisibility, and various complex backgrounds that are far beyond those in existing datasets. The end-to-end deep learning approach, referred to as a side-output residual network (SRN), leverages the output residual units (RUs) to fit the errors between the object ground-truth symmetry and the side-outputs of multiple stages. By cascading RUs in a deep-to-shallow manner, SRN exploits the 'flow' of errors among multiple stages to address the challenges of fitting complex output with limited convolutional layers, suppressing the complex backgrounds, and effectively matching object symmetry at different scales. SRN is further upgraded to a multi-task side-output residual network (MT-SRN) for joint symmetry and edge detection, demonstrating its generality to image-to-mask learning tasks. Experimental results validate both the challenging aspects of Sym-PASCAL benchmark related to real-world images and the state-of-the-art performance of the proposed SRN approach.

Citations (5)

Summary

We haven't generated a summary for this paper yet.