Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Beta Prime Prior for Scale Parameters in High-Dimensional Bayesian Regression Models (1807.06539v3)

Published 17 Jul 2018 in stat.ME

Abstract: We study high-dimensional Bayesian linear regression with a general beta prime distribution for the scale parameter. Under the assumption of sparsity, we show that appropriate selection of the hyperparameters in the beta prime prior leads to the (near) minimax posterior contraction rate when $p \gg n$. For finite samples, we propose a data-adaptive method for estimating the hyperparameters based on marginal maximum likelihood (MML). This enables our prior to adapt to both sparse and dense settings, and under our proposed empirical Bayes procedure, the MML estimates are never at risk of collapsing to zero. We derive efficient Monte Carlo EM and variational EM algorithms for implementing our model, which are available in the R package NormalBetaPrime. Simulations and analysis of a gene expression data set illustrate our model's self-adaptivity to varying levels of sparsity and signal strengths.

Summary

We haven't generated a summary for this paper yet.