Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unifying Inference for Bayesian and Petri Nets (1807.06305v1)

Published 17 Jul 2018 in cs.LO

Abstract: Recent work by the authors equips Petri occurrence nets (PN) with probability distributions which fully replace nondeterminism. To avoid the so-called confusion problem, the construction imposes additional causal dependencies which restrict choices within certain subnets called structural branching cells (s-cells). Bayesian nets (BN) are usually structured as partial orders where nodes define conditional probability distributions. In the paper, we unify the two structures in terms of Symmetric Monoidal Categories (SMC), so that we can apply to PN ordinary analysis techniques developed for BN. Interestingly, it turns out that PN which cannot be SMC-decomposed are exactly s-cells. This result confirms the importance for Petri nets of both SMC and s-cells.

Citations (1)

Summary

We haven't generated a summary for this paper yet.