Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An exposition of the false confidence theorem (1807.06217v1)

Published 17 Jul 2018 in stat.ME

Abstract: A paper presents the "false confidence theorem" (FCT) which has potentially broad implications for statistical inference using Bayesian posterior uncertainty. This theorem says that with arbitrarily large (sampling/frequentist) probability, there exists a set which does \textit{not} contain the true parameter value, but which has arbitrarily large posterior probability. Since the use of Bayesian methods has become increasingly popular in applications of science, engineering, and business, it is critically important to understand when Bayesian procedures lead to problematic statistical inferences or interpretations. In this paper, we consider a number of examples demonstrating the paradoxical nature of false confidence to begin to understand the contexts in which the FCT does (and does not) play a meaningful role in statistical inference. Our examples illustrate that models involving marginalization to non-linear, not one-to-one functions of multiple parameters play a key role in more extreme manifestations of false confidence.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com