Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Introducing Quantum-Like Influence Diagrams for Violations of the Sure Thing Principle (1807.06142v2)

Published 16 Jul 2018 in cs.AI

Abstract: It is the focus of this work to extend and study the previously proposed quantum-like Bayesian networks to deal with decision-making scenarios by incorporating the notion of maximum expected utility in influence diagrams. The general idea is to take advantage of the quantum interference terms produced in the quantum-like Bayesian Network to influence the probabilities used to compute the expected utility of some action. This way, we are not proposing a new type of expected utility hypothesis. On the contrary, we are keeping it under its classical definition. We are only incorporating it as an extension of a probabilistic graphical model in a compact graphical representation called an influence diagram in which the utility function depends on the probabilistic influences of the quantum-like Bayesian network. Our findings suggest that the proposed quantum-like influence digram can indeed take advantage of the quantum interference effects of quantum-like Bayesian Networks to maximise the utility of a cooperative behaviour in detriment of a fully rational defect behaviour under the prisoner's dilemma game.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Catarina Moreira (52 papers)
  2. Andreas Wichert (21 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.