Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal behavior of the corners of Orbital Beta Processes (1807.06134v2)

Published 16 Jul 2018 in math.PR, math-ph, math.CA, and math.MP

Abstract: There is a unique unitarily-invariant ensemble of $N\times N$ Hermitian matrices with a fixed set of real eigenvalues $a_1 > \dots > a_N$. The joint eigenvalue distribution of the $(N - 1)$ top-left principal submatrices of a random matrix from this ensemble is called the orbital unitary process. There are analogous matrix ensembles of symmetric and quaternionic Hermitian matrices that lead to the orbital orthogonal and symplectic processes, respectively. By extrapolation, on the dimension of the base field, of the explicit density formulas, we define the orbital beta processes. We prove the universal behavior of the virtual eigenvalues of the smallest $m$ principal submatrices, when $m$ is independent of $N$ and in such a way that the rescaled empirical measures converge weakly. The limiting object is the Gaussian beta corners process. As a byproduct of our approach, we prove a theorem on the asymptotics of multivariate Bessel functions.

Summary

We haven't generated a summary for this paper yet.