Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning Approaches to Hybrid Music Recommender Systems (1807.05858v1)

Published 16 Jul 2018 in cs.IR

Abstract: Music recommender systems have become a key technology supporting the access to increasingly larger music catalogs in on-line music streaming services, on-line music shops, and private collections. The interaction of users with large music catalogs is a complex phenomenon researched from different disciplines. We survey our works investigating the machine learning and data mining aspects of hybrid music recommender systems (i.e., systems that integrate different recommendation techniques). We proposed hybrid music recommender systems based solely on data and robust to the so-called "cold-start problem" for new music items, favoring the discovery of relevant but non-popular music. We thoroughly studied the specific task of music playlist continuation, by analyzing fundamental playlist characteristics, song feature representations, and the relationship between playlists and the songs therein.

Citations (9)

Summary

We haven't generated a summary for this paper yet.