Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Submodular Maximization: Beating 1/2 Made Simple (1807.05529v2)

Published 15 Jul 2018 in cs.DS

Abstract: The Submodular Welfare Maximization problem (SWM) captures an important subclass of combinatorial auctions and has been studied extensively from both computational and economic perspectives. In particular, it has been studied in a natural online setting in which items arrive one-by-one and should be allocated irrevocably upon arrival. In this setting, it is well known that the greedy algorithm achieves a competitive ratio of 1/2, and recently Kapralov et al. (2013) showed that this ratio is optimal for the problem. Surprisingly, despite this impossibility result, Korula et al. (2015) were able to show that the same algorithm is 0.5052-competitive when the items arrive in a uniformly random order, but unfortunately, their proof is very long and involved. In this work, we present an (arguably) much simpler analysis that provides a slightly better guarantee of 0.5096-competitiveness for the greedy algorithm in the random-arrival model. Moreover, this analysis applies also to a generalization of online SWM in which the sets defining a (simple) partition matroid arrive online in a uniformly random order, and we would like to maximize a monotone submodular function subject to this matroid. Furthermore, for this more general problem, we prove an upper bound of 0.576 on the competitive ratio of the greedy algorithm, ruling out the possibility that the competitiveness of this natural algorithm matches the optimal offline approximation ratio of 1-1/e.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Niv Buchbinder (21 papers)
  2. Moran Feldman (50 papers)
  3. Yuval Filmus (71 papers)
  4. Mohit Garg (15 papers)
Citations (21)